Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis.

نویسندگان

  • Barbara Steiner
  • Friederike Klempin
  • Liping Wang
  • Monika Kott
  • Helmut Kettenmann
  • Gerd Kempermann
چکیده

In the course of adult hippocampal neurogenesis, new cells go through a series of stages associated with proliferative activity. The most highly proliferative cell type is an intermediate precursor cell, called type-2 cell. We here report that on the level of type-2 cells a transition takes place between features associated with the glial and the neuronal lineage. We show that stem-cell marker Sox2 and radial glia marker BLBP are expressed in type-2 cells but label only a small percentage of the proliferating cells. By and large, precursor cell marker Sox2 was found to be widely expressed in hippocampal astrocytes. Between 3 h and 1 week after a single injection of permanent S-phase marker bromodeoxyuridine (BrdU), the number of BrdU-labeled BLBP-positive cells did not change, consistent with the idea that both markers here are associated with the maintained precursor cell pool. Using reporter gene mice expressing the green fluorescent protein (GFP) under the promoter for nestin we found an overlap of GFP with markers of the neuronal lineage, doublecortin (DCX) and transcription factor NeuroD1 in type-2 cells, whereas in glial fibrillary acidic protein (GFAP)-GFP mice expression of GFP and NeuroD1 or DCX was mutually exclusive. Electrophysiologically, the group of type-2 cells fell into two subgroups: one with astrocytic properties and another with an early "complex" phenotype of neural progenitor cells. Our data further support the existence of proliferative precursor cells that mark the transition between glia-like states and neuronal differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alterations in adult hippocampal neurogenesis, aberrant protein s-nitrosylation, and associated spatial memory loss in streptozotocin-induced diabetes mellitus type 2 mice

Objective(s): Epidemiological and biochemical studies conducted over the past two decades have established a strong link between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD). However, the exact mechanisms through which aberrations in insulin signaling associated with T2DM contribute to cognitive decline are not yet known. Materials and Methods: In an effort to explore possible m...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

Adult Hippocampal Neurogenesis and Memory

Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...

متن کامل

Effects of 17-β estradiol on neurogenesis in the hippocampus of ovariectomized mice

Background & Aims: Adult neurogenesis occurs in the two main areas of the brain of most mammalian species in; sub ventricular zone, and the dentate gyrus of the hippocampus. Many factors such as 17-β estradiol affect neurogenesis in the hippocampus. The aim of this study was to investigate the effect of exogenous 17-β estradiol on neurogenesis in the ovariectomized (OVX) mice. Materials & Meth...

متن کامل

NT-3 facilitates hippocampal plasticity and learning and memory by regulating neurogenesis.

In the adult brain, the expression of NT-3 is largely confined to the hippocampal dentate gyrus (DG), an area exhibiting significant neurogenesis. Using a conditional mutant line in which the NT-3 gene is deleted in the brain, we investigated the role of NT-3 in adult neurogenesis, hippocampal plasticity, and memory. Bromodeoxyuridine (BrdU)-labeling experiments demonstrated that differentiatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Glia

دوره 54 8  شماره 

صفحات  -

تاریخ انتشار 2006